Forbidden Subsystem Characterization of Matroids and Applications to Classes of Matroid Generating Graphs Forbidden Subsystem Characterization of Matroids and Applications to Classes of Matroid Generating Graphs
نویسندگان
چکیده
We provide a forbidden induced subsystem characterization of those independence systems which are matroids. On this basis we describe a method for characterizing classes of matroid-deening graphs, associated to every hereditary graph property.
منابع مشابه
Structural properties of fuzzy graphs
Matroids are important combinatorial structures and connect close-lywith graphs. Matroids and graphs were all generalized to fuzzysetting respectively. This paper tries to study connections betweenfuzzy matroids and fuzzy graphs. For a given fuzzy graph, we firstinduce a sequence of matroids from a sequence of crisp graph, i.e.,cuts of the fuzzy graph. A fuzzy matroid, named graph fuzzy matro...
متن کاملOn cographic matroids and signed-graphic matroids
We prove that a connected cographic matroid of a graph G is the bias matroid of a signed graph Σ iff G imbeds in the projective plane. In the case that G is nonplanar, we also show that Σ must be the projective-planar dual signed graph of an actual imbedding of G in the projective plane. As a corollary we get that, if G1, . . . , G29 denote the 29 nonseparable forbidden minors for projective-pl...
متن کاملForbidden-minor characterization for the class of graphic element splitting matroids
This paper is based on the element splitting operation for binary matroids that was introduced by Azadi as a natural generalization of the corresponding operation in graphs. In this paper, we consider the problem of determining precisely which graphic matroids M have the property that the element splitting operation, by every pair of elements on M yields a graphic matroid. This problem is solve...
متن کاملCHARACTERIZATION OF L-FUZZIFYING MATROIDS BY L-FUZZIFYING CLOSURE OPERATORS
An L-fuzzifying matroid is a pair (E, I), where I is a map from2E to L satisfying three axioms. In this paper, the notion of closure operatorsin matroid theory is generalized to an L-fuzzy setting and called L-fuzzifyingclosure operators. It is proved that there exists a one-to-one correspondencebetween L-fuzzifying matroids and their L-fuzzifying closure operators.
متن کاملEnergy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کامل